Fundamentals of Data Structures with C 87

{
FILE *fp;
int c;
fp = fopen("in.dat", "r");
if (fp == NULL)
{
printf ("Error in opening file\n");
exit(1l);
}
while ((c = getc(fp)) != EOF)
printf ("Char. read = %c\n", c);
fclose(fp);
}
Sample Run
Char. read = B
Char. read = I
Char. read = T
Char. read =

The program shown above assumes that the input file in.dat already exists and contains
the text 'BIT". As explained already, gerc reads characters one by one from in.dat and

writes

it on the console. The last character read is a file terminator not printable.

A much more useful and meaningful example is shown in Program 1.41. This
program counts the number of characters, words, and lines in a given text.

Program 1.40

Count of characters, words, and lines.

#include <stdio.h>
#include <stdlib.h>

void

{

main{()

FILE *fp;
char fname[25];
int c;

int linecount
int wordcount
int charcount

0;
0;
0;

won

printf("Enter the file name : ");

scanf("%$s", fname);

fp = fopen(fname, "r");
if (!fp)

{

88 Chapter1 » Introduction to C

printf("Error in opening file <press Enter key>\n");
fflush(stdin);

getchar();
exit(1l);
}
while ((c = getc(fp)) != EOF)
{
charcount++;
switch(c)
{
case '\n': linecount++;
wordcount++;
break;
case ' ': wordcount++;
break;
}
}
printf("No. of Chars. : %d\n", --charcount);
printf("No. of lines : %d\n", linecount);
printf("No. of words : %d\n", wordcount);
getchar () ;
fclose(fp);

}
Sample Run

Contents of in.dat

Bangalore Institute of Technology is
in the heart of Bangalore city.
D:\DS-Book>filel

Enter the file name : in.dat

No. of Chars. : 69
No. of lines : 2
No. of words : 11

Following points are worth mentioning:

(1) File names can be given at run time also (fname does this job).

(2) The file fname is opened in read mode.

(3) The variable charcount is incremented whenever a character is read. Word
count is done based upon a blank character and line count is based on a new line
character ',

(4) The input file is not altered.

Fundaméntals of Data Structures with C 89

1.13.4 Stream Functions - ''w'' mode

When a file is opened in "w" mode, data can be written into it from the beginning of the
file. This mode creates a new file if doesn't exist already. If it exists its old contents is
deleted. Therefore, you must be careful when you specify the output file name.

Program 1.41 demonstrates write mode by first reading some text from the keyboard
using getchar() until the user presses <ctrl-Z>. All characters entered are written to the
file named as exp.dat. The same file is opened in "r" and its contents displayed in the
usual manner. Notice that we have two file pointers: infp for reading and out fp for
writing (you can manage with single file pointer also. See the Program 1.42).

Program 1.41
Read from keyboard and write into a file

#include <stdio.h>

#include <stdlib.h>

void main{()

{ .
FILE *infp, *outfp; /* i/o file pointers */
int c¢;
outfp = fopen("exp.dat", "w");

/* read from keyboard and write into output file */
while ((c = getchar()) != EOF)
putc(c,outfp) ;

infp = fopen("exp.dat","r");

if (infp == NULL)

{
printf ("Error in opening file\n");
exit(1l);

}

/* read from input file & display on the console */
while ((¢ = getc(infp)) != EOF)
putc(c, stdout);

fcloseall();

90 Chapter1 » Introduction to C
1.13.5 Stream Functions - "'a'' mode

The "a'" mode or append mode is almost same as write mode with a difference that
you can append data to an existing at its end. As given in Table 1.11, the file pointer is
positioned at the end of the file in append mode so that data can be added to an existing
file. If the specified file in fopen() is not in the disk, a new file will be created.

Let us show the working of "a" mode with an example program and is shown in
Program 1.42. This program assumes that the data file exists already and the text to be
appended will be read from the user. The contents of the file before and after appending
are displayed in the normal manner.

Program 1.42
Appending text to a file

#include <stdio.h>
#include <stdlib.h>
void main()
{

FILE *fp;

int c¢;

printf ("Text before appending:\n");
fp = fopen("exp.dat", "r");
if (fp == NULL)

{
printf ("Error in opening file\n");
exit(1l);

}

while ((c = fgetc(fp)) != EOF)

fputc(c, stdout);

fp = fopen("exp.dat", "a");

printf ("Enter text for appending:\n");

while ((c = getchar()) != EOF)
fputc(c, fp) ;

fclose(£fp):

printf ("Text after appending:\n");

fp = fopen("exp.dat", "r");

if (fp == NULL)

{
printf ("Error in opening file\n");
exit(1l);

